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SUMMARY

An all-speed algorithm based on the SIMPLE pressure-correction scheme and the ‘retarded-density’
approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme
for both incompressible and compressible flows, the latter involving interaction of shock waves. The
collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are
eliminated by using a pressure-weighted interpolation method, similar to that of Rhie and Chow
[Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983;
21: 1525]. The solution accuracy is greatly enhanced when a higher-order convection scheme combined
with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: adoptive mesh refinement; higher-order convection scheme; interpolation scheme; unstruc-
tured grid methods

1. INTRODUCTION

Unstructured grid methods have become increasingly popular in the development of computa-
tional fluid dynamics (CFD) technology to solve complex flow problems of industrial
relevance. In the past, the finite volume method (FVM) has been combined with the curvilinear
co-ordinate transformation to deal with gently curved geometries. For highly complex config-
urations, such as a multi-element airfoil, the common practice is to introduce the multi-block
algorithm within a structured grid finite volume (FV) code [1]. Assuming that each block
contains only one control volume, then this approach is equivalent to the unstructured grid FV
scheme. So the key issue is to adopt a data structure which does not rely on the (I, J) indices.
This is because a pair of (I, J) indices is generally related to (x, y) or (j, h) co-ordinate
directions within the structured grid environment. Within the unstructured grid method, the
definition of a co-ordinate system is not necessary. Instead, a different data structure has to be
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adopted. One might choose either a volume-based or an edge-based data structure; both require
information of adjacent neighbours and points forming the volume or the edge.

In addition to geometric flexibilities, a stable implementation of physical models, such as
turbulence models at the Reynolds stress closure level, is equally important when developing
a CFD code. Most of the turbulent flow calculations, particularly those using a higher-order
turbulence closure, were performed with pressure-based FV methods. This is because sufficient
experience of implementing consistent boundary conditions and preventing numerical instabil-
ities has been accumulated for pressure-based methods since the early 1970s. Within the
pressure-based methods, the staggered grid approach is favoured initially to prevent checker-
board oscillations [2]. However, applying this approach to a curvilinear co-ordinate system,
particularly in conjunction with a multi-grid method, is cumbersome. The staggered grid
approach is then superseded by the collocated grid approach, after the paper of Rhie and Chow
in 1983 [3], which was originally designed for structured grid methods. Extending this idea to
unstructured grid methods requires careful thought. A simple and yet efficient interpolation
scheme is proposed here, and details will be addressed in Section 2.

Modelling shock-induced separation within turbulent boundary layers can be very challenging
from both numerical and physical view points. In the inviscid regions, the flow is hyperbolic
and involves the interaction of shock waves. Within the boundary layer and recirculation regions,
the flow is low-speed and elliptic in nature, which can be ‘stiff’ for density-based methods as
a result of sound speed approaching infinity. Although this problem can be alleviated by using
the artificial compressibility method [4], pressure-based methods are generally more efficient.
However, in order to capture shock waves, the pressure (or the pressure-correction) equation
needs to be modified when the flow becomes supersonic. The simplest approach is to introduce
artificial dissipation via the ‘density retardation’ method [5]. Application of this method in
conjunction with the SIMPLE algorithm to turbulent shock–boundary layer interaction
problems has been reported by Lien and Leschziner [6] using the structured grid approach.
Extending the retarded-density approach to an unstructured grid method will be considered here,
and its performance in contrast to the structured grid approach will be discussed in Section 3.

The ultimate goal is to develop an all-speed numerical procedure based on the cell-centred
unstructured grid approach with application to transonic turbulent flow problems using an
advanced turbulence closure, such as the non-linear eddy–viscosity model and second-moment
closure. The numerical accuracy and efficiency will be enhanced by use of the adaptive mesh
refinement (AMR) technique. The present paper is the first attempt to achieve the above goal
and the emphasis here is on physical modelling. The remainder of the paper is divided into two
principal sections before drawing conclusions. First, the numerical details, including a higher-
order convection scheme, the shock-capturing SIMPLE algorithm and the AMR technique, will
be addressed. This is followed by several validation tests, ranging from a scalar transport
problem, a laminar recirculating flow to a supersonic inviscid flow.

2. UNSTRUCTURED GRID METHOD

2.1. Go6erning equations

The numerical approximation starts with the following two-dimensional Navier–Stokes (NS)
equations, which govern the mass as well as momentum conservation:
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In order to apply the above equations to a solution domain of irregular shapes, Equations
(1)–(3) need to be transformed using either the chain rule, i.e.
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or the Green Theorem, i.e.
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where f stands for the momentum components or the pressure. The former is widely employed
within the structured grid environment, in which a quadrilateral-shaped finite volume in
two-dimensional form is often used with one of the curvilinear co-ordinates penetrating the
midpoint of each face. The latter, commonly adopted for the unstructured grid methods, does
not require curvilinear co-ordinates as the evaluations of first-order derivatives with respect to
x and y are performed on a Cartesian domain. As a result, even a polygon with an arbitrary
number of edges can be used as a finite volume, which enhances significantly its geometrical
flexibility in tackling complex configurations.

The remainder of this section is divided into five subsections. A cell-based data structure
adopted in the present study is explained in Section 2.2. Integration of convective and diffusive
fluxes over a finite volume and the resulting discretized equations, corresponding to Equations
(2) and (3), are addressed in Section 2.3. The continuity equation (1), solved indirectly using a
pressure-correction scheme, is described in Section 2.4, and its extension to supersonic
conditions is given in Section 2.5. Section 2.6 contains AMR issues, which are based on the
algorithms of Rivara [7] and Chen et al. [8].
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2.2. Storage arrangement and data structure

A collocated storage arrangement for momentum components, pressure and density within a
triangular finite volume is adopted here. The connectivity matrices consist of forming points
and neighbours, which are denoted by ‘no–fp(n,no–edges)’ and ‘no–nb(n,no–edges)’ respec-
tively in a FORTRAN program to follow. The basic idea of this data structure, in contrast to
its structured grid counterpart, can be conveyed by reference to Figure 1 and Table I. As can
be seen, for a structured grid the variable f is stored in the form of a two-dimensional array
f(I c, J c). Its four neighbours can be easily identified as f(I c91, J c91), with I and J pointing
to x and y (or j and h in a curvilinear co-ordinate system) respectively. The same data
structure also applies to x and y co-ordinates of the forming points, which are stored at the
vertices of a finite volume. For the unstructured grid approach, no (I, J) indices are used.
Instead, all neighbours and forming points are numbered in the counterclockwise direction, the
same as that adopted in the Green Theorem.

Figure 1. Data structure: (a) for an unstructured grid; (b) for a structured grid.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 355–374
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Table I. Data structures for structured grid and unstructured grid approaches.

Structured grid approach
NeighboursVariables Forming points

f(I c, J c) (I c+1, J c), (I c−1, J c), (I c, J c+1), (I c, Jc−1) (Iv, Jv), (Iv−1, Jv) (Iv−1, Jv−1), (Iv, Jv−1)

Unstructured grid approach
NeighboursVariables Forming points
(1c, 2c, 3c)f(n) (1v, 2v, 3v)

2.3. Finite 6olume discretization

2.3.1. Con6ection approximation. Integration of the convective terms in Equations (2) and (3)
over a finite volume shown in Figure 2(a), and application of the Green Theorem gives

&& �(ruf

(x
+
(r6f

(y
�

dx dy=% C0�mf0�m (6)

Figure 2. Integration areas: (a) for convective fluxes; (b) for diffusive fluxes.
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where f=u, 6, the mass fluxes

C0�1=r(u0�1Dy12−60�1Dx12)

C0�2=r(u0�2Dy23−60�2Dx23) (7)

C0�3=r(u0�3Dy31−60�3Dx31)

and u0–m, 60–m (m=1, 2, 3) are evaluated by the use of a pressure-weighted interpolation
method similar to that proposed by Rhie and Chow for the structured grid method, which will
be explained in Section 2.4. The face value of f, i.e f0–m in Equation (6) is approximated by
the following second-order upwind scheme:

f0�m=f0+ (9f)0 ·
Dr� 0�m

2
, if C0�m\0

f0�m=fm− (9f)m ·
Dr� 0�m

2
, if C0�mB0

(8)

where 9f= ((f/(x, (f/(y) and Dr� = (Dx, Dy). The underlined terms, corresponding to a
first-order upwind scheme, form part of the matrix coefficients and are treated implicitly. The
rest are lumped into an additional source term Sf

DC—the ‘deferred-correction’ approach—
which is given as follows:

Sf
DC=

1
2

%
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[C0�m
+ (9f)0 · Dr� 0�m−C0�m

− (9f)m · Dr� 0�m ] (9)

where C0�m
9 =1

2(C0�m9 �C0�m �).
2.3.2. Diffusion approximation. The values of (f/(x and (f/(y at the edge 0–1 can be
evaluated using Equation (5) over the quadrilateral shaded area shown in Figure 2(b). This
gives
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The values of fv are obtained by averaging over all surroundings cell-centred nodal values for
any vertex being considered, which generally requires local searching. This problem can be
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circumvented by performing three ‘do’ loops exemplified below, where ‘n–cell’ and ‘n–grid’
are the total number of cells and grids respectively.

� Initialization:
do nv=1,n–grid
fv(nv)=0
n–total(nv)=0
end do

� Equal distribution of f c to fv:
do nc=1,n–cell
fv(no–fp(nc,1))=fv(no–fp(nc,1))+f c(nc)
fv(no–fp(nc,2))=fv(no–fp(nc,2))+f c(nc)
fv(no–fp(nc,3))=fv(no–fp(nc,3))+f c(nc)
n–total(no–fp(nc,1))=n–total(no–fp(nc,1)+1
n–total(no–fp(nc,2))=n–total(no–fp(nc,2)+1
n–total(no–fp(nc,3))=n–total(no–fp(nc,3)+1
end do

� Averaging fv by the total number of surrounding cells:
do nv=1,n–grid
fv(nv)=fv(nv)/float(n–total(nv))
end do

Similar expressions apply to the edges 0–2 and 0–3. The end result of integrating the diffusion
terms pertaining to Equations (2) and (3) is

&& � (
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(

(y
(Gfy)

n
dx dy

=
G0�1

2V0�1
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+
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2V0�2
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Here G=m—the laminar viscosity. Note that the underlined terms pertain to the normal
diffusion, which contribute to the implicit part of the solution matrix and the rest relate to the
cross-diffusion, which are lumped into the source term Sf and treated explicitly. It is
worthwhile to point out that under certain circumstance, the above discretization is equivalent
to its structured grid counterpart, which is based on the curvilinear co-ordinate transforma-
tion. Consider a square finite volume shown in Figure 3. The first right-hand side term in
Equation (12), corresponding to Figure 3(a), is the same as the following expression, which
relates to Figure 3(b) in the (j, h) co-ordinate system:
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Figure 3. Integration areas.

Ge

Je

[(fE−fP)(xh
2 +yh

2)e− (fne−fse)(xjxh+yjyh)e ] (13)

Proof:
Since

fElf1
c, fPlf0

c, fnelf2
v, fself1

v

(xh
2 +yh

2)e

Je

l
(Dx12

2 +Dy12
2 )

2V0�1

(xjxh+yjyh)e

Je

l
(Dx01Dx12+Dy01Dy12)

2V0�1

and GelG0�1, both expressions are identical.
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2.3.3. Coefficient assembly. Insertion of the above convection and diffusive fluxes into the
volume-weighted equation gives

A0f0= %
m=1,2,3

Amfm+Sf (14)

where

A1=MAX(−C0�1, 0)+
G0�1(Dx12
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2 )
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(15)

A0=A1+A2+A3

The source term Sf contains the cross-diffusion term

−
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2V0�1
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2V0�2
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−
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2V0�3

[(f1
v−f3

v)(Dx03Dx31+Dy03Dy31)] (16)

the ‘deferred-correction’ term defined in Equation (9), when a higher-order convection scheme
is adopted, and the pressure gradient terms

+ (p0�1Dy12+p0�2Dy23+p0�3Dy31), for f=u (17)

and

− (p0�1Dx12+p0�2Dx23+p0�3Dx31), for f=6 (18)

At present, only the Gauss–Seidel method is used to solve Equation (14).

2.4. Pressure-correction scheme

The tendency of provoking checkerboard oscillations arising from the pressure–velocity
decoupling is due to the use of the collocated storage arrangement, regardless of whether a
structured grid or an unstructured grid method being used. This problem can be avoided by
introducing the ‘Rhie–Chow’ interpolation for the evaluation of face velocities, which consists
of an arithmetic average of two adjacent velocities and a third-order pressure-smoothing term.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 355–374
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A similar approach is adopted here to evaluate the face velocities on a triangular mesh. For
example,
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The cell-centred pressure gradients [((p/(x)0, ((p/(x)1, ((p/(y)0, ((p/(y)1] are discretized
using the Green Theorem in Equation (5). The pressure gradients at edges, however, are
approximated by the following expressions involving only two adjacent pressure nodes:

2(V((p/(x))0�1

(A0)0+ (A0)1
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2Dy12(p1−p0)
(A0)0+ (A0)1

(21)

2(V((p/(y))0�1
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:
−2Dx12(p1−p0)

(A0)0+ (A0)1

(22)

Similar expressions relate to other edges. Perturb the face velocities via

u=u*+u %, 6=6*+6% (23)

where, for example,

u %0�1�−
2Dy12(p %1−p %0)
(A0)0+ (A0)1

, 6%0−1�
2Dx12(p %1−p %0)
(A0)0+ (A0)1

(24)

and substitute the above into the discretized continuity equation, giving rise to the following
pressure-correction equation:

a0p %0= %
m=1,2,3

amp %m−Rm (25)

The mass imbalance, Rm, is defined by

Rm=C0�1* +C0�2* +C0�3* (26)

and the coefficients am (m=0, 1, 2, 3) are

a1=2
Dx12

2 +Dy12
2

(A0)0+ (A0)1

, a2=2
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,

a0=a1+a2+a3 (27)
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Then the new mass fluxes and pressure field are obtained via

C0�m=C0�m* +am(p %0−p %m), m=1, 2, 3 (28)

p=p*+app % (29)

where ap:0.4–0.6 is the underrelaxation factor for p %. In summary, the pressure-correction
scheme consists of six major steps

1. Guess the pressure field p*.
2. Solve the momentum equations by using Equations (14)–(18) to obtain u* and 6*.
3. Solve Equation (25) for p %.
4. Calculate p from Equation (29) by adding p % to p*.
5. Calculate u and 6 and mass fluxes C0–m from their starred values using the velocity-

correction formulae (23), (24) and (28).
6. Treat the corrected pressure p as a new guessed pressure p*, return to step (2), and repeat

the whole procedure until a converged solution is obtained.

This operates in precisely the same manner as the SIMPLE algorithm detailed by Reference [2]
for the staggered grid and by Reference [9] for the collocated grid arrangements.

2.5. Extension to supersonic condition

The extension to supersonic flows, including the shock-capturing capability, consists of three
basic elements. First, the unsteady form of the Navier–Stokes equation is adopted, in which
the transient term is approximated by the first-order one-sided differencing scheme. Second,
the total enthalpy H0 is assumed constant so that solving explicitly the energy equation is not
required. Third, the flux variables (ru, r6) rather than the primitive variables (u, 6) are chosen
as the dependent variables, the perturbations of which, i.e.

ru= (ru)*+ (ru)%, r6= (r6)*+ (r6)% (30)

are very similar to those of Equation (23). As a result, no mass-flux linearization, as used by
Karki and Patankar [10], is required. Fourth, a second-order artificial dissipation based on the
‘density-retardation concept’ [5] is introduced, the basic concept of which can be explained by
use of the potential equation in conservative form as

(r̃Fx)x+ (r̃Fy)y=0 (31)

with r̃—the retarded density—given by

r̃=r− m̄rsDs=r− m̄(cos(b)rxDx+sin(b)ryDy) (32)

where cos(b)=u/
u2+62 and sin(b)=6/
u2+62. The monitor function m̄ in Equation (32)
is defined by

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 355–374
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m̄=MAX
�

0, 1−
1

M2

�
(33)

where M is the local Mach number. A physical interpretation of the above density-biasing
concept is conveyed in Figure 4.

The same idea has been extended to Navier–Stokes solvers based on the pressure-correction
SIMPLE scheme on a structured grid [6]. In one-dimensional conditions, the gradient of the
convective flux of any flux variable (ru or r6 here) may be expressed, implicitly, as follows:

(

(x

:
ru

�mass flux
f

r̃

;
=
(

(x
: ruf

r− m̄
(r

(x
Dx

;
=
(

(x
(uf)+

(
�

m̄
�uf

r

� (r
(x

Dx
n

(x
+HOT (34)

where the right-hand side is an expanded (i.e. explicit) form of the left-hand side, with HOT
denoting higher-order terms. The underlined term in Equation (34) represents a dissipative
mechanism equivalent to upwind-biasing. In two-dimensional conditions on an unstructured
grid, the mass flux C in Equation (7) is modified as

C�
C
r̃

(35)

or, on face 1v–2v in Figure 1, as

C0�1=
C0�1

+

m̄0�1r0+ (1− m̄0�1)r1

+
C0�1

−

m̄0�1r1+ (1− m̄0�1)r0

(36)

Figure 4. Schematic of density-biasing concept.
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where

C0�1
9 =

C0�19 �C0�1�
2

(37)

C0�1= (ru)0�1Dy12− (r6)0�1Dx12 (38)

The monitoring function m̄0�1 defined in Equation (33), used to control the level of artificial
dissipation at supersonic condition, is modified to include two free parameters k and Mref

m̄0�1=MAX
�

0, k
�

1−
�Mref

M0�1

�2�n
(39)

Similar expressions relate to C0–2 and C0–3. Typical values for Mref and k are approximately
0.7 and 0.55 respectively. In summary, the sequence of the present shock-capturing pressure-
correction scheme consists of six major steps

1. Calculate (ru)* and (r6)* by use of p*.
2. Introduce density retardation by modifying the convective fluxes C0–m (m=1, 2, 3) accord-

ing to Equations (36)–(39).
3. Evaluate Rm for all cells.
4. Solve p %-equation and then correct the velocity and pressure fields.
5. Obtain the density using constant total enthalpy assumption, i.e.

r=
gp

(g−1)[H0−
1
2(u

2+62)]
(40)

where g=1.4 is the specific heat ratio for air.
6. Go to the next time step and repeat steps (1)–(5) until steady state is reached.

2.6. Adapti6e mesh refinement

The mesh refinement techniques proposed by Rivara [7] and Chen et al. [8] are adopted here.
A cell is flagged when ‘func(f)’—the sensor function—exceeds the threshold value Cr. The
sensor function chosen here is based on the gradient or magnitude of a related property, which
will be given separately for each case to follow. The value Cr is

Cr= func(f)min+ratio[func(f)max− func(f)min] (41)

where ‘ratio’ is a user-defined free parameter. However, an optimal choice of Cr requires
experience, and the refined pattern obtained initially is often seen to be unsatisfactory. Instead
of adjusting the ‘ratio’, to which the result can be very sensitive in certain cases, a more
effective approach—the isotropic ad6ancing front method—is proposed here, which in essence,
extends the range of refined regions by flagging neighbours of previously flagged cells
repeatedly for a fixed number of times. Its schematic representation together with a practical
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example—a supersonic flow over a circular bump (see Section 3.3 for details)—is illustrated
in Figure 5. Then all flagged cells are bisected by simply connecting the midpoint at the longest
edge to the point opposite to that edge. However, during the above refinement sequence,
non-conforming triangles, i.e. triangles with at least a ‘hanging’ point on one of its sides, might
exist. If this does happen, the adjacent coarse cells will also be bisected, which might on its
own introduce additional non-conforming triangles. It is recursive and the whole refinement
procedure will repeat itself until all ‘hanging’ points have been completely removed.

3. APPLICATION

3.1. O6er6iew of test cases

In order to validate the newly developed unstructured grid code applicable to flows at all
speeds, three tests with very different characteristics are chosen here

� convection–diffusion transport of a scalar property by a rotational field [11];
� supersonic inviscid flow over a circular bump [12];
� laminar lid-driven cavity flow.

All results obtained will be compared with the structured grid solutions returned by the
STREAM code [13], which is also based on an all-speed pressure-correction algorithm,
including supersonic condition. In the present study, only a two-level AMR is used for all cases
to follow.

3.2. Scalar ad6ection by a rotational 6elocity field

The convective–diffusive transport of a scalar step across a Cartesian mesh by a rotational
motion is examined here to test the quality of a convection scheme, particularly one
formulated on the basis of one-dimensional consideration but applied to multi-dimensional
transport. The steady transport of a scalar in two-dimensional space is governed by the
equation

(uf

(x
+
(6f

(y
=

1
Pe

�(2f

(x2 +
(2f

(y2

�
for −15x51, 05y51 (42)

subject to

u=2y(1−x2), 6= −2x(1−y2) (43)

The boundary conditions pertaining to (42) are
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Figure 5. Isotropic advancing front method: (a) a schematic representation; (b) initial mesh; (c)
ratio=0.05; (d) ratio=0.05 together with repeating the isotropic advancing front three times.
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f=1− tanh(10) for x=1, 05y51

f=1− tanh(10) for x= −1, 05y51

f=1− tanh(10) for y=1, −15x51

f=1− tanh[10(2x+1)] for y=0, −15x50
(f

(y
=0 for y=0, 05x51

(44)

The contour plots of f at Pe=106 and its corresponding profiles at y=0, obtained with both
the first-order (UDS) and the second-order (LUDS) upwind schemes on a mesh of 4288 cells,
are shown in Figure 6. As seen, the UDS scheme clearly returns unacceptable erosion of the
scalar gradients due to a high level of second-order diffusion provoked by the leading
truncation error of the scheme. With the same UDS scheme, the unstructured gird solution
with a two-level mesh refinement is better than its structured grid counterpart without mesh
refinement. However, a good agreement between structured grid and unstructured grid
solutions was achieved when the LUDS scheme was both adopted.

3.3. Supersonic in6iscid flow o6er a circular bump

The second case examined is a supersonic flow at M�=1.4 over a 4 per cent circular bump.
The mesh in Figure 7 contains 7224 cells, which is obtained with the following sensor function:

func(f)f=p= %
m=1,2,3

�pm−p0� (45)

together with the parameter ‘ratio’ in Equation (33) set to 0.05. The refined pattern is
subsequently enlarged by repeating the isotropic advancing front technique three times to
ensure a smooth transition in the vicinity of shock waves. The predicted pressure contours in
Figure 7 are compared with the structured grid solution obtained with a mesh of 128×64
nodes. As seen both results are fairly close to each other and give a credible representation of
shock-reflection pattern: the formation of a strong oblique shock close to the outlet as a result
of the coalescence of the second reflection and the trailing edge shock, which is far better than
Karki and Patankar’s solution [10].

3.4. Laminar flow in a square ca6ity

The last case investigated is a laminar lid-driven cavity flow at Re=400. In order to capture
the corner eddies, the sensor function is designed on the basis of velocity magnitude as follows:

func(f)
f=
u 2+6 2=1−
u2+62 (46)

With ‘ratio’ set to 0.75 followed by repeating the isotropic advancing front technique twice, the
resulting mesh, containing 13 592 cells, is shown in Figure 8. Comparisons of velocity profiles
along the vertical and horizontal centrelines of the cavity with those obtained with a structured
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Figure 6. Scalar transport problem: (a) computational mesh; (b) profiles of scalar property at y=0; (c)
contour plots obtained with LUDS; (d) contour plots obtained with UDS.
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Figure 7. Supersonic bump flow: (top) computational mesh; (middle) unstructured grid solution;
(bottom) structured grid solution.

grid method, the latter performed on a mesh of 128×128 nodes, are shown in Figure 8. As
demonstrated in this figure, the unstructured grid solutions agree well with the structured grid
ones. More importantly, the resulting smooth pressure contours in the same figure suggest that
checkerboard oscillations have been eliminated by the present pressure-weighted interpolation
scheme for face velocities similar to that of Rhie and Chow [5].

4. CONCLUSIONS AND FUTURE WORK

This paper addresses the details of an effort in which an all-speed numerical algorithm based
on the pressure-correction scheme SIMPLE has been implemented into an unstructured grid
finite volume code for both incompressible and compressible flows, the latter involving shock
waves. Although the study is not exhaustive, the test calculations permit the following
conclusions to be drawn:
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Figure 8. Lid-driven cavity flow: (top-left) computational mesh; (top-right) pressure contours; (bottom-
left) u velocity profile at x=0.5; (bottom-right) 6 velocity profile at y=0.5.

� The solution accuracy can be achieved economically by combining a higher-order convec-
tion scheme with AMR strategy, the sensor function of which is based on the gradient or
magnitude of flow properties.

� An all-speed pressure-correction scheme, based on the ‘density retardation’ approach, has
been implemented successfully in the present unstructured grid method.

� The CPU overhead of using the second-order LUDS scheme relative to the first-order UDS
is about 20 per cent.

� The checkerboard oscillations have been avoided by relating the face velocities to two
adjacent pressure nodes, which is similar to the Rhie–Chow interpolation for the structured
grid method.
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� Extension of the present unstructured grid scheme to turbulent flow calculations, involving
shock–boundary layer interaction, will be reported in future accounts.
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